Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(2): e0100123, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38231535

RESUMO

Endogenous transporters protect Staphylococcus aureus against antibiotics and also contribute to bacterial defense from environmental toxins. We evaluated the effect of overexpression of four efflux pumps, NorA, NorB, NorC, and Tet38, on S. aureus survival following exposure to pyocyanin (PYO) of Pseudomonas aeruginosa, using a well diffusion assay. We measured the PYO-created inhibition zone and found that only an overexpression of NorA reduced S. aureus susceptibility to pyocyanin killing. The MICPYO of the NorA overexpressor increased threefold compared to that of wild-type RN6390 and was reduced 2.5-fold with reserpine, suggesting that increased NorA efflux caused PYO resistance. The PYO-created inhibition zone of a ΔnorA mutant was consistently larger than that of a plasmid-borne NorA overexpressor. PYO also produced a modest increase in norA expression (1.8-fold at 0.25 µg/mL PYO) that gradually decreased with increasing PYO concentrations. Well diffusion assays carried out using P. aeruginosa showed that ΔnorA mutant was less susceptible to killing by PYO-deficient mutants PA14phzM and PA14phzS than to killing by PA14. NorA overexpression led to reduced killing by all tested P. aeruginosa. We evaluated the NorA-PYO interaction using a collection of 22 clinical isolates from adult and pediatric cystic fibrosis (CF) patients, which included both S. aureus (CF-SA) and P. aeruginosa (CF-PA). We found that when isolated alone, CF-PA and CF-SA expressed varying levels of PYO and norA transcripts, but all four CF-PA/CF-SA pairs isolated concurrently from CF patients produced a low level of PYO and low norA transcript levels, respectively, suggesting a partial adaptation of the two bacteria in circumstances of persistent co-colonization.


Assuntos
Infecções por Pseudomonas , Infecções Estafilocócicas , Humanos , Criança , Staphylococcus aureus , Pseudomonas aeruginosa/metabolismo , Piocianina/farmacologia , Proteínas de Bactérias/metabolismo , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Testes de Sensibilidade Microbiana
2.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570836

RESUMO

Inhibiting quorum sensing (QS), a central communication system, is a promising strategy to combat bacterial pathogens without antibiotics. Here, we designed novel hybrid compounds targeting the PQS (Pseudomonas quinolone signal)-dependent quorum sensing (QS) of Pseudomonas aeruginosa that is one of the multidrug-resistant and highly virulent pathogens with urgent need of new antibacterial strategies. We synthesized 12 compounds using standard procedures to combine halogen-substituted anthranilic acids with 4-(2-aminoethyl/4-aminobuthyl)amino-7-chloroquinoline, linked via 1,3,4-oxadiazole. Their antibiofilm activities were first pre-screened using Gram-negative Chromobacterium violaceum-based reporter, which identified compounds 15-19 and 23 with the highest anti-QS and minimal bactericidal effects in a single experiment. These five compounds were then evaluated against P. aeruginosa PAO1 to assess their ability to prevent biofilm formation, eradicate pre-formed biofilms, and inhibit virulence using pyocyanin as a representative marker. Compound 15 displayed the most potent antibiofilm effect, reducing biofilm formation by nearly 50% and pre-formed biofilm masses by 25%. On the other hand, compound 23 exhibited the most significant antivirulence effect, reducing pyocyanin synthesis by over 70%. Thus, our study highlights the potential of 1,3,4-oxadiazoles 15 and 23 as promising scaffolds to combat P. aeruginosa. Additionally, interactive QS systems should be considered to achieve maximal anti-QS activity against this clinically relevant species.


Assuntos
Quinolinas , Percepção de Quorum , Piocianina/farmacologia , Biofilmes , Virulência , Antibacterianos/farmacologia , Fatores de Virulência , Quinolinas/farmacologia , Pseudomonas aeruginosa , Chromobacterium
3.
Int Wound J ; 20(10): 4112-4121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37455022

RESUMO

The present study investigated the antimicrobial and anti-biofilm effects of indigenous Lactobacillus probiotic strains on Pseudomonas aeruginosa isolated from burn wound infection in laboratory conditions. The effect of 7 probiotic strains isolated from infant faeces on the pathogenicity factors of P. aeruginosa, including protease, elastase, antibiofilm and antipyocyanin was measured. Also, diffusion methods in the well and micro broth dilution were used to evaluate the antimicrobial activity of probiotics. All tests were performed in triplicate. A negative control and a positive control were used for each test. SPSS version 22 software was used for statistical analysis, and a p < 0.05 was considered statistically significant. A total of 30 clinical isolates of P. aeruginosa were isolated. The elastolytic activity of P. aeruginosa isolates decreased after adding Cell free supernatant (CFS) of each Lactobacillus. L1, L4, L5, and L6 strains had a 100% inhibitory effect on pathogen isolates. L3 and L7 strains had the lowest inhibitory effect. The inhibitory effect of CFS extracted from lactobacilli on protease production by P. aeruginosa. L1, L4, L5, and L6 strains had an inhibitory effect on all tested isolates. L2, L3, and L7 strains had a less inhibitory effect. L4 strain had the highest inhibitory effect on pyocyanin production by P. aeruginosa (50%), followed by L5 (43.3%), L1 (40%), and L6 (23.3%) strains. L3 and L7 strains had no inhibitory effect on the pyocyanin production of P. aeruginosa isolates. It was found that the CFS of 4 isolates (L1, L4, L5, and L6) was the most active extract and had a 100% inhibitory effect against biofilm formation of all P. aeruginosa strains. The L3 strain had the least inhibitory effect against the biofilm formation of pathogens. Overall, this study showed that probiotics could be promising alternatives to combat the pathogenicity of P. aeruginosa in burn wounds.


Assuntos
Anti-Infecciosos , Queimaduras , Infecções por Pseudomonas , Humanos , Lactobacillus , Pseudomonas aeruginosa , Piocianina/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Peptídeo Hidrolases , Queimaduras/terapia , Infecções por Pseudomonas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
Biotechnol Bioeng ; 120(3): 702-714, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36408870

RESUMO

Biofilms are communities of bacterial cells encased in a self-produced polymeric matrix that exhibit high tolerance toward environmental stress. Despite the plethora of research on biofilms, most P. aeruginosa biofilm models are cultured on a solid-liquid interface, and the longitudinal growth characteristics of P. aeruginosa biofilm are unclear. This study demonstrates the real-time and noninvasive monitoring of biofilm growth using a novel dual-chamber microfluidic device integrated with electrochemical detection capabilities to monitor pyocyanin (PYO). The growth of P. aeruginosa biofilms on the air-liquid interface (ALI) was monitored over 48 h, and its antibiotic susceptibility to 6 h exposure of 50, 400, and 1600 µg/ml of ciprofloxacin solutions was analyzed. The biofilm was treated directly on its surface and indirectly from the substratum by delivering the CIP solution to the top or bottom chamber of the microfluidic device. Results showed that P. aeruginosa biofilm developed on ALI produces PYO continuously, with the PYO production rate varying longitudinally and peak production observed between 24 and 30 h. In addition, this current study shows that the amount of PYO produced by the ALI biofilm is proportional to its viable cell numbers, which has not been previously demonstrated. Biofilm treated with ciprofloxacin solution above 400 µg/ml showed significant PYO reduction, with biofilms being killed more effectively when treatment was applied to their surfaces. The electrochemical measurement results have been verified with colony-forming unit count results, and the strong correlation between the PYO electrical signal and the viable cell number highlights the usefulness of this approach for fast and low-cost ALI biofilm study and antimicrobial tests.


Assuntos
Ciprofloxacina , Pseudomonas aeruginosa , Ciprofloxacina/farmacologia , Ciprofloxacina/metabolismo , Piocianina/metabolismo , Piocianina/farmacologia , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Testes de Sensibilidade Microbiana
5.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557818

RESUMO

Antimicrobial resistance has posed a serious health concern worldwide, which is mainly due to the excessive use of antibiotics. In this study, gold nanoparticles synthesized from the plant Tinospora cordifolia were used against multidrug-resistant Pseudomonas aeruginosa. The active components involved in the reduction and stabilization of gold nanoparticles were revealed by gas chromatography-mass spectrophotometry(GC-MS) of the stem extract of Tinospora cordifolia. Gold nanoparticles (TG-AuNPs) were effective against P. aeruginosa at different concentrations (50,100, and 150 µg/mL). TG-AuNPs effectively reduced the pyocyanin level by 63.1% in PAO1 and by 68.7% in clinical isolates at 150 µg/mL; similarly, swarming and swimming motilities decreased by 53.1% and 53.8% for PAO1 and 66.6% and 52.8% in clinical isolates, respectively. Biofilm production was also reduced, and at a maximum concentration of 150 µg/mL of TG-AuNPs a 59.09% reduction inPAO1 and 64.7% reduction in clinical isolates were observed. Lower concentrations of TG-AuNPs (100 and 50 µg/mL) also reduced the pyocyanin, biofilm, swarming, and swimming. Phenotypically, the downregulation of exopolysaccharide secretion from P. aeruginosa due to TG-AuNPs was observed on Congo red agar plates.


Assuntos
Nanopartículas Metálicas , Pseudomonas aeruginosa , Ouro/farmacologia , Piocianina/farmacologia , Biofilmes , Antibacterianos/farmacologia
6.
Microb Cell Fact ; 21(1): 262, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528623

RESUMO

BACKGROUND: Pyocyanin, a specific extracellular secondary metabolite pigment produced by Pseudomonas aeruginosa, exhibits redox activity and has toxic effects on mammalian cells, making it a new and potent alternative for treating cancer. Breast cancer (BC) treatment is now defied by acquired and de novo resistance to chemotherapy, radiation, or targeted therapies. Therefore, the anticancer activity of purified and characterized pyocyanin was examined against BC in our study. RESULTS: The maximum production of pyocyanin (53 µg/ml) was achieved by incubation of the highest pyocyanin-producing P. aeruginosa strain (P32) in pH-adjusted peptone water supplemented with 3% cetrimide under shaking conditions at 37 °C for 3 days. The high purity of the extracted pyocyanin was proven by HPLC against standard pyocyanin. The stability of pyocyanin was affected by the solvent in which it was stored. Therefore, the purified pyocyanin extract was lyophilized to increase its shelf-life up to one year. Using the MTT assay, we reported, for the first time, the cytotoxic effect of pyocyanin against human breast adenocarcinoma (MCF-7) with IC50 = 15 µg/ml while it recorded a safe concentration against human peripheral blood mononuclear cells (PBMCs). The anticancer potential of pyocyanin against MCF-7 was associated with its apoptotic and necrotic activities which were confirmed qualitatively and quantitively using confocal laser scanning microscopy, inverted microscopy, and flow cytometry. Caspase-3 measurements, using real-time PCR and western blot, revealed that pyocyanin exerted its apoptotic activity against MCF-7 through caspase-3 activation. CONCLUSION: Our work demonstrated that pyocyanin may be an ideal anticancer candidate, specific to cancer cells, for treating MCF-7 by its necrotic and caspase-3-dependent apoptotic activities.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Animais , Humanos , Feminino , Piocianina/metabolismo , Piocianina/farmacologia , Pseudomonas aeruginosa/metabolismo , Caspase 3/metabolismo , Células MCF-7 , Leucócitos Mononucleares/metabolismo , Neoplasias da Mama/tratamento farmacológico , Mamíferos/metabolismo
7.
Microbiol Spectr ; 10(6): e0259022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36354317

RESUMO

Inorganic phosphate (Pi) is a central nutrient and signal molecule for bacteria. Pi limitation was shown to increase the virulence of several phylogenetically diverse pathogenic bacteria with different lifestyles. Hypophosphatemia enhances the risk of death in patients due to general bacteremia and was observed after surgical injury in humans. Phosphate therapy, or the reduction of bacterial virulence by the administration of Pi or phosphate-containing compounds, is a promising anti-infective therapy approach that will not cause cytotoxicity or the emergence of antibiotic-resistant strains. The proof of concept of phosphate therapy has been obtained using primarily Pseudomonas aeruginosa (PA). However, a detailed understanding of Pi-induced changes at protein levels is missing. Using pyocyanin production as proxy, we show that the Pi-mediated induction of virulence is a highly cooperative process that occurs between 0.2 to 0.6 mM Pi. We present a proteomics study of PA grown in minimal medium supplemented with either 0.2 mM or 1 mM Pi and rich medium. About half of the predicted PA proteins could be quantified. Among the 1,471 dysregulated proteins comparing growth in 0.2 mM to 1 mM Pi, 1,100 were depleted under Pi-deficient conditions. Most of these proteins are involved in general and energy metabolism, different biosynthetic and catabolic routes, or transport. Pi depletion caused accumulation of proteins that belong to all major families of virulence factors, including pyocyanin synthesis, secretion systems, quorum sensing, chemosensory signaling, and the secretion of proteases, phospholipases, and phosphatases, which correlated with an increase in exoenzyme production and antibacterial activity. IMPORTANCE Antibiotics are our main weapons to fight pathogenic bacteria, but the increase in antibiotic-resistant strains and their consequences represents a major global health challenge, revealing the necessity to develop alternative antimicrobial strategies that do not involve the bacterial killing or growth inhibition. P. aeruginosa has been placed second on the global priority list to guide research on the development of new antibiotics. One of the most promising alternative strategies is the phosphate therapy for which the proof of concept has been obtained for P. aeruginosa. This article reports the detailed changes at the protein levels comparing P. aeruginosa grown under Pi-abundant and Pi-depleted conditions. These data describe in detail the molecular mechanisms underlying phosphate therapy. Apart from Pi, several other phosphate-containing compounds have been used for phosphate therapy and this study will serve as a reference for comparative studies aimed at evaluating the effect of alternative compounds.


Assuntos
Fosfatos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Fosfatos/metabolismo , Fosfatos/farmacologia , Proteômica , Piocianina/metabolismo , Piocianina/farmacologia , Percepção de Quorum , Virulência , Fatores de Virulência/metabolismo
8.
Microb Drug Resist ; 28(11): 1003-1018, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36219761

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes several serious health problems and numerous forms of virulence. During the treatment of P. aeruginosa infections, the development of multidrug-resistant isolates creates significant clinical problems. Using antivirulence compounds to disrupt pathogenicity rather than killing the bacterium may be an interesting strategy to overcome this problem, because less harsh conditions will exist for the development of resistance. To reduce pathogenicity and biofilm formation, newly synthesized analogs of imidazolyl (8n) and previously synthesized analogs (8a-8m) with a similar backbone [the 5-(imidazolyl-methyl) thiazolidinediones] were tested against pyoverdine and pyocyanin production, protease activity, and biofilm formation. Compared to the positive control group, the best compounds reduced the production of pyoverdine (8n) by 89.57% and pyocyanin (8i) by 22.68%, and protease activity (8n) by 2.80% for PAO1 strain, at a concentration of 10 µM. Moreover, the biofilm formation assay showed a reduction of 87.94% (8i) for PAO1, as well as 30.53% (8d) and 44.65% (8m) for 1074 and 1707 strains, respectively. The compounds used in this study did not show any toxicity in the human dermal fibroblasts and 4T1 cells (viability higher than 90%). The in silico study of these compounds revealed that their antivirulence activity could be due to their interaction with the PqsR, PqsE, and LasR receptors.


Assuntos
Pseudomonas aeruginosa , Tiazolidinedionas , Humanos , Piocianina/farmacologia , Percepção de Quorum , Biofilmes , Antibacterianos/farmacologia , Fatores de Virulência , Tiazolidinedionas/farmacologia , Peptídeo Hidrolases/farmacologia , Proteínas de Bactérias/farmacologia
9.
Mar Drugs ; 20(5)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35621934

RESUMO

α-Amylase inhibitors (aAIs) have been applied for the efficient management of type 2 diabetes. The aim of this study was to search for potential aAIs produced by microbial fermentation. Among various bacterial strains, Pseudomonas aeruginosa TUN03 was found to be a potential aAI-producing strain, and shrimp heads powder (SHP) was screened as the most suitable C/N source for fermentation. P. aeruginosa TUN03 exhibited the highest aAIs productivity (3100 U/mL) in the medium containing 1.5% SHP with an initial pH of 7-7.5, and fermentation was performed at 27.5 °C for two days. Further, aAI compounds were investigated for scaled-up production in a 14 L-bioreactor system. The results revealed a high yield (4200 U/mL) in a much shorter fermentation time (12 h) compared to fermentation in flasks. Bioactivity-guided purification resulted in the isolation of one major target compound, identified as hemi-pyocyanin (HPC) via gas chromatography-mass spectrometry and nuclear magnetic resonance. Its purity was analyzed by high-performance liquid chromatography. HPC demonstrated potent α-amylase inhibitory activity comparable to that of acarbose, a commercial antidiabetic drug. Notably, HPC was determined as a new aAI. The docking study indicated that HPC inhibits α-amylase by binding to amino acid Arg421 at the biding site on enzyme α-amylase with good binding energy (-9.3 kcal/mol) and creating two linkages of H-acceptors.


Assuntos
Quitina , Piocianina/biossíntese , Quitina/metabolismo , Pseudomonas aeruginosa/metabolismo , Piocianina/farmacologia , alfa-Amilases/antagonistas & inibidores
10.
Oxid Med Cell Longev ; 2022: 3060579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340215

RESUMO

Pyocyanin (PCN) is a redox-active secondary metabolite produced by Pseudomonas aeruginosa as its primary virulence factor. Several studies have reported the cytotoxic potential of PCN and its role during infection establishment and progression. Considering its ability to diffuse through biological membranes, it is hypothesized that PCN can gain entry into the brain and induce oxidative stress across the blood-brain barrier (BBB), ultimately contributing towards reactive oxygen species (ROS) mediated neurodegeneration. Potential roles of PCN in the central nervous system (CNS) have never been evaluated, hence the study aimed to evaluate PCN's probable penetration into CNS through blood-brain barrier (BBB) using both in silico and in vivo (Balb/c mice) approaches and the impact of ROS generation via commonly used tests: Morris water maze test, novel object recognition, elevated plus maze test, and tail suspension test. Furthermore, evidence for ROS generation in the brain was assessed using glutathione S-transferase assay. PCN demonstrated BBB permeability albeit in minute quantities. A significant hike was observed in ROS generation (P < 0.0001) along with changes in behavior indicating PCN permeability across BBB and potentially affecting cognitive functions. This is the first study exploring the potential role of PCN in influencing the cognitive functions of test animals.


Assuntos
Disfunção Cognitiva , Piocianina , Animais , Barreira Hematoencefálica/metabolismo , Camundongos , Permeabilidade , Pseudomonas/metabolismo , Pseudomonas aeruginosa , Piocianina/metabolismo , Piocianina/farmacologia , Fatores de Virulência/metabolismo , Fatores de Virulência/toxicidade
11.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208954

RESUMO

Quorum-sensing (QS) systems of Pseudomonas aeruginosa are involved in the control of biofilm formation and virulence factor production. The current study evaluated the ability of halogenated dihydropyrrol-2-ones (DHP) (Br (4a), Cl (4b), and F (4c)) and a non-halogenated version (4d) to inhibit the QS receptor proteins LasR and PqsR. The DHP molecules exhibited concentration-dependent inhibition of LasR and PqsR receptor proteins. For LasR, all compounds showed similar inhibition levels. However, compound 4a (Br) showed the highest decrease (two-fold) for PqsR, even at the lowest concentration (12.5 µg/mL). Inhibition of QS decreased pyocyanin production amongst P. aeruginosa PAO1, MH602, ATCC 25619, and two clinical isolates (DFU-53 and 364707). In the presence of DHP, P. aeruginosa ATCC 25619 showed the highest decrease in pyocyanin production, whereas clinical isolate DFU-53 showed the lowest decrease. All three halogenated DHPs also reduced biofilm formation by between 31 and 34%. The non-halogenated compound 4d exhibited complete inhibition of LasR and had some inhibition of PqsR, pyocyanin, and biofilm formation, but comparatively less than halogenated DHPs.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Percepção de Quorum/efeitos dos fármacos , Piocianina/análogos & derivados , Piocianina/síntese química , Piocianina/química , Piocianina/farmacologia
12.
Int Microbiol ; 25(3): 447-456, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35066679

RESUMO

Quorum sensing (QS) regulates hundreds of genes in Pseudomonas aeruginosa, and many of which encode extracellular virulence factors. Lactobacillus as a probiotic has been verified to inhibit pathogenesis in P. aeruginosa via quenching QS. The objective of this study was to investigate mechanism of the QS quenching function of Lactobacillus via analyzing the gene expression by transcriptome. We previously isolated a Lactobacillus brevis strain 3M004 from an aquafeed and identified the strain has the function of degrading QS molecular AHL (OC12-HSL). The result showed that 3M004 cells/lysate inhibited biofilm and pyocyanin production of P. aeruginosa PA002. The biofilm inhibition rates were 16.92% and 33.0% after treatment by 1 and 2 mg/mL 3M004 lysate, respectively, and the rates for pyocyanin inhibition were 25.16% and 30.75%, respectively. Transcriptomic analysis showed that down-regulation of genes of LasA and LasB in PA002 was essential in regulating the QS system. The biofilm decrease of PA002 seems not only resulted from gene biosynthesizing of polysaccharides but also from other genes regulating components biosynthesis. Pyocyanin biosynthesis appears to be inhibited by down-regulating the key gene of PhzAB on the nonreversing action from chorismite to pyocyanin.


Assuntos
Levilactobacillus brevis , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes , Levilactobacillus brevis/genética , Levilactobacillus brevis/metabolismo , Piocianina/metabolismo , Piocianina/farmacologia , Percepção de Quorum/genética , RNA-Seq , Transcriptoma
13.
J Biomol Struct Dyn ; 40(15): 6845-6856, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33645444

RESUMO

Quorum sensing (QS) is a system used in the expression of virulence factors by many pathogenic bacteria, and blockage of the system is seen as a new and effective strategy in combating with resistant bacteria. The inhibition effects of two benzimidazolium salts, namely 1-(2-methylbenzonitrile)-3-benzylbenzimidazolium bromide (2) and 1-(N-methylphthalimide)-3-(4-methylbenzyl)benzimidazolium bromide (3), on quorum sensing-related virulence factors such as pyocyanin, elastase, biofilm formation and swarming motility, which is an opportunistic pathogen Pseudomonas aeruginosa PA01, were investigated in this study. The results show that the compound 3 has a significant inhibition on biofilm formation with 94%. Furthermore, the compounds 2 and 3 reduced swarming motility by 64-69% as well as pyocyanin production by 49-64% in P. aeruginosa PA01 without preventing bacterial growth in the tested concentrations. HF, B3LYP and M06-2X methods were used with 3-21 g, 6-31 g, sdd basis sets to compare the chemical activity of the compounds. Theoretically, 1H NMR, 13C NMR and Infrared spectra of the compounds were calculated in the HF/6-31++g basis set. The biological activities of the relative compounds were theoretically studied against cancer proteins. Crystal structure of the BRCT repeat region from the breast cancer associated protein, ID: 1JNX, crystal structure of liver cancer protein, ID: 3WZE and crystal structure of lung cancer protein, ID: 5ZMA, were compared. In the docking studies, the best result was obtained with compound 2 against the lung cancer cell with a docking score parameter of -5.85.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias Pulmonares , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Proteínas de Bactérias/farmacologia , Biofilmes/efeitos dos fármacos , Brometos/farmacologia , Elétrons , Humanos , Neoplasias Pulmonares/patologia , Piocianina/farmacologia , Sais , Fatores de Virulência
14.
J Biomol Struct Dyn ; 40(20): 9752-9760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34143945

RESUMO

Pyocyanin, a redox-active phenazine pigment produced by Pseudomonas aeruginosa, inhibits 5-lipoxygenase (5-LOX) activity. However, whether pyocyanin can directly block the enzymatic activity by binding at the active site still remains a question because of its ability to produce superoxide radicals and H2O2. With the objective of characterizing this mechanism, we carried out molecular docking and molecular dynamics simulations and performed Molecular Mechanics Poisson-Boltzmann surface area (MMPBSA) binding energy studies. The results of the study revealed that pyocyanin is dynamically stable at the active site of 5-LOX and its MMPBSA binding energy (-84.720 kJ/mol) is comparable to that of the 5-LOX standard inhibitor zileuton (-72.729 kJ/mol). Similar studies using three other phenazine derivatives - 1-hydroxyphenazine, phenazine-1-carboxylic acid and phenazine-1-carboxamide - also showed encouraging results. In light of this evidence, we postulate as a proof of concept that pyocyanin and these phenazine derivatives have the potential to inhibit 5-LOX activity by directly binding at the active site and blocking enzymatic catalysis of the substrate. Considering the potential of 5-LOX inhibitors in inflammatory diseases such as asthma and rheumatoid arthritis, the findings of this study open up the exploration of phenazine derivatives in structure-based drug design against 5-LOX. Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Piocianina , Piocianina/metabolismo , Piocianina/farmacologia , Simulação de Acoplamento Molecular , Araquidonato 5-Lipoxigenase/metabolismo , Peróxido de Hidrogênio , Fenazinas/farmacologia
15.
J Cell Mol Med ; 25(15): 7524-7537, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34278675

RESUMO

Pyocyanin (PYO) is a major virulence factor secreted by Pseudomonas aeruginosa, and autophagy is a crucial homeostatic mechanism for the interaction between the pathogens and the host. It remains unknown whether PYO leads to autophagy in macrophages by regulating histone acetylation. The high mobility group nucleosomal binding domain 2 (HMGN2) has been reported to regulate the PYO-induced autophagy and oxidative stress in the epithelial cells; however, the underlying molecular mechanism has not been fully elucidated. In this study, PYO was found to induce autophagy in macrophages, and the mechanism might be correlated with the up-regulation of HMGN2 acetylation (HMGN2ac) and the down-regulation of H3K27 acetylation (H3K27ac) by modulation of the activities of acetyltransferases and deacetylases. Moreover, we further demonstrated that the up-regulated HMGN2ac enhances its recruitment to the Ulk1 promoter, while the down-regulation of H3K27ac reduces its recruitment to the Ulk1 promoter, thereby promoting or inhibiting the transcription of Ulk1. In conclusion, HMGN2ac and H3K27ac play regulatory roles in the PYO-induced autophagy in macrophages.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Autofagia , Proteína HMGN2/metabolismo , Código das Histonas , Macrófagos Peritoneais/metabolismo , Acetilação , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Células Cultivadas , Humanos , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas , Piocianina/farmacologia , Células RAW 264.7 , Células THP-1 , Ativação Transcricional
16.
Molecules ; 26(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205355

RESUMO

Rottlerin is a natural product consisting of chalcone and flavonoid scaffolds, both of which have previously shown quorum sensing (QS) inhibition in various bacteria. Therefore, the unique rottlerin scaffold highlights great potential in inhibiting the QS system of Pseudomonas aeruginosa. Rottlerin analogues were synthesised by modifications at its chalcone- and methylene-bridged acetophenone moieties. The synthesis of analogues was achieved using an established five-step synthetic strategy for chalcone derivatives and utilising the Mannich reaction at C6 of the chromene to construct morpholine analogues. Several pyranochromene chalcone derivatives were also generated using aldol conditions. All the synthetic rottlerin derivatives were screened for QS inhibition and growth inhibition against the related LasR QS system. The pyranochromene chalcone structures displayed high QS inhibitory activity with the most potent compounds, 8b and 8d, achieving QS inhibition of 49.4% and 40.6% and no effect on bacterial growth inhibition at 31 µM, respectively. Both compounds also displayed moderate biofilm inhibitory activity and reduced the production of pyocyanin.


Assuntos
Acetofenonas/farmacologia , Benzopiranos/farmacologia , Produtos Biológicos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Flavonoides/farmacologia , Testes de Sensibilidade Microbiana/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/farmacologia
17.
Vet Immunol Immunopathol ; 237: 110265, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33989854

RESUMO

Severe equine asthma is characterized by airway hyperresponsiveness, neutrophilic inflammation and structural alterations of the lower airways. In asthmatic horses with neutrophilic inflammation, there is insensitivity to corticosteroids characterized by the persistence of neutrophils within the airways with therapy. We hypothesized that hypoxia or oxidative stress in the microenvironment of the lung contributes to this insensitivity of neutrophils to corticosteroids in asthmatic horses. Blood neutrophils isolated from horses with severe asthma (N = 8) and from healthy controls (N = 8) were incubated under different cell culture conditions simulating hypoxia and oxidative stress and, in the presence, or absence of dexamethasone. The pro-inflammatory gene and protein expression of neutrophils were studied. In both groups, pyocyanin-induced oxidative stress increased the mRNA expression of IL-8, IL-1ß, and TNF-α. While IL-1ß and TNF-α were downregulated by dexamethasone under these conditions, IL-8 was not. Simulated hypoxic conditions did not enhance pro-inflammatory gene expression in neutrophils from either group of horses. In conclusion, oxidative stress but not hypoxia may contribute to corticosteroid insensitivity via a selective gene regulation pathway. Equine neutrophil responses were similar in both heathy and asthmatic horses, indicating that it is not specific to asthmatic inflammation.


Assuntos
Asma/veterinária , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Doenças dos Cavalos/tratamento farmacológico , Neutrófilos/efeitos dos fármacos , Animais , Asma/tratamento farmacológico , Asma/imunologia , Células Cultivadas , Quimiocinas/biossíntese , Quimiocinas/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Doenças dos Cavalos/imunologia , Cavalos , Hipóxia/imunologia , Hipóxia/metabolismo , Hipóxia/veterinária , Mediadores da Inflamação/metabolismo , Interleucina-17/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Neutrófilos/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/imunologia , Piocianina/farmacologia
18.
J Am Chem Soc ; 143(22): 8344-8351, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33978401

RESUMO

Bacteriophages have major impact on their microbial hosts and shape entire microbial communities. The majority of these phages are latent and reside as prophages integrated in the genomes of their microbial hosts. A variety of intricate regulatory systems determine the switch from a lysogenic to lytic life style, but so far strategies are lacking to selectively control prophage induction by small molecules. Here we show that Pseudomonas aeruginosa deploys a trigger factor to hijack the lysogenic to lytic switch of a polylysogenic Staphylococcus aureus strain causing the selective production of only one of its prophages. Fractionating extracts of P. aeruginosa identified the phenazine pyocyanin as a highly potent prophage inducer of S. aureus that, in contrast to mitomycin C, displayed prophage selectivity. Mutagenesis and biochemical investigations confirm the existence of a noncanonical mechanism beyond SOS-response that is controlled by the intracellular oxidation level and is prophage-selective. Our results demonstrate that human pathogens can produce metabolites triggering lysogenic to lytic conversion in a prophage-selective manner. We anticipate our discovery to be the starting point of unveiling metabolite-mediated microbe-prophage interactions and laying the foundations for a selective small molecule controlled manipulation of prophage activity. These could be for example applied to control microbial communities by their built-in destruction mechanism in a novel form of phage therapy or for the construction of small molecule-inducible switches in synthetic biology.


Assuntos
Prófagos/metabolismo , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/metabolismo , Lisogenia/efeitos dos fármacos , Estrutura Molecular , Prófagos/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/farmacologia , Staphylococcus aureus/efeitos dos fármacos
19.
Nat Commun ; 12(1): 2103, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833234

RESUMO

Mitochondrial diseases impair oxidative phosphorylation and ATP production, while effective treatment is still lacking. Defective complex III is associated with a highly variable clinical spectrum. We show that pyocyanin, a bacterial redox cycler, can replace the redox functions of complex III, acting as an electron shunt. Sub-µM pyocyanin was harmless, restored respiration and increased ATP production in fibroblasts from five patients harboring pathogenic mutations in TTC19, BCS1L or LYRM7, involved in assembly/stabilization of complex III. Pyocyanin normalized the mitochondrial membrane potential, and mildly increased ROS production and biogenesis. These in vitro effects were confirmed in both DrosophilaTTC19KO and in Danio rerioTTC19KD, as administration of low concentrations of pyocyanin significantly ameliorated movement proficiency. Importantly, daily administration of pyocyanin for two months was not toxic in control mice. Our results point to utilization of redox cyclers for therapy of complex III disorders.


Assuntos
Trifosfato de Adenosina/biossíntese , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/genética , Doenças Mitocondriais/tratamento farmacológico , Proteínas Mitocondriais/genética , Piocianina/farmacologia , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Animais Geneticamente Modificados , Linhagem Celular , Drosophila melanogaster , Complexo III da Cadeia de Transporte de Elétrons/genética , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Doenças Mitocondriais/patologia , Chaperonas Moleculares/genética , Oxirredução/efeitos dos fármacos , Piocianina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
20.
PLoS Biol ; 19(3): e3001093, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690640

RESUMO

Bacterial opportunistic human pathogens frequently exhibit intrinsic antibiotic tolerance and resistance, resulting in infections that can be nearly impossible to eradicate. We asked whether this recalcitrance could be driven by these organisms' evolutionary history as environmental microbes that engage in chemical warfare. Using Pseudomonas aeruginosa as a model, we demonstrate that the self-produced antibiotic pyocyanin (PYO) activates defenses that confer collateral tolerance specifically to structurally similar synthetic clinical antibiotics. Non-PYO-producing opportunistic pathogens, such as members of the Burkholderia cepacia complex, likewise display elevated antibiotic tolerance when cocultured with PYO-producing strains. Furthermore, by widening the population bottleneck that occurs during antibiotic selection and promoting the establishment of a more diverse range of mutant lineages, PYO increases apparent rates of mutation to antibiotic resistance to a degree that can rival clinically relevant hypermutator strains. Together, these results reveal an overlooked mechanism by which opportunistic pathogens that produce natural toxins can dramatically modulate the efficacy of clinical antibiotics and the evolution of antibiotic resistance, both for themselves and other members of clinically relevant polymicrobial communities.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Bactérias/genética , Burkholderia cepacia/efeitos dos fármacos , Burkholderia cepacia/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Tolerância a Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/metabolismo , Piocianina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...